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Recentwork has demonstrated that subjectmotion produces systematic biases in themetrics computed bywide-
ly used morphometry software packages, even when the motion is too small to produce noticeable image arti-
facts. In the common situation where the control population exhibits different behaviors in the scanner when
compared to the experimental population, these systematic measurement biases may produce significant con-
founds for between-group analyses, leading to erroneous conclusions about group differences. While previous
work has shown that prospective motion correction can improve perceived image quality, here we demonstrate
that, in healthy subjects performing a variety of directedmotions, the use of the volumetric navigator (vNav) pro-
spective motion correction system significantly reduces the motion-induced bias and variance in morphometry.
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Introduction

The influence of motion on MRI neuroimaging studies, particularly
high-resolution, 3D-encoded imaging where scan times can extend to
several minutes, has long been recognized in both clinical and research
environments (Maclaren et al., 2013; Zaitsev et al., 2015). In both set-
tings, images that are qualitatively considered to be motion-degraded
are often discarded and rescanned. In some research studies, subjects
are removed from analysis when their scans show unacceptable levels
of motion degradation (e.g., Qureshi et al., 2014; Harvard Center for
Brain Science, 2015), while in other studies, efforts are made to match
controls to experimental subjects with similar amounts of motion
(Yendiki et al., 2014; Koldewyn et al., 2014). All of these methods of
dealing with motion must be used carefully to avoid introducing biases
iomedical Imaging, Room 2301,
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into group analyses. For example, removing subjects who move during
their MRI scans, or selecting control subjects based on how much they
move, may result in selection bias.

The importance of accounting formotion has beenmade clear by re-
cent work showing that differences in motion between groups lead to
not just a decrease in statistical power, but can introduce biases in a va-
riety of neuroimaging experiments (Van Dijk et al., 2012; Power et al.,
2012, 2014; Satterthwaite et al., 2012, 2013; Yan et al., 2013; Yendiki
et al., 2014; Hess et al., 2014; Reuter et al., 2015). Connectivity analyses
performed using functional (Van Dijk et al., 2012; Power et al., 2012,
2014; Satterthwaite et al., 2012, 2013; Yan et al., 2013) and diffusion-
weighted data (Yendiki et al., 2014) both show significant sensitivity
to subject motion. In the case of brain morphometry, (Reuter et al.,
2015) demonstrated that the impact of motion is a continuous effect,
with even small subject motions biasing the resulting measurements.
As a result, only aggressive removal of motion-damaged data, beyond
what is normally done in neuroimaging studies, could bring the effect
of motion on gray matter volume and thickness estimates below a sta-
tistically significant level. This work concluded that even motion
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whose impact on image quality is effectively unnoticeable by visual in-
spection still biases the morphometric analysis.

The volumetric navigator (vNavs) systemallows the scanner to track
the subject's head during the scan and prospectively correct for subject
motion (Tisdall et al., 2012; Hess et al., 2011). vNavs are inserted into
the dead-time in MRI pulse sequences (normally once per TR), with
each navigator acquiring a complete, but low-resolution head volume
in roughly 300ms. These navigator volumes are then rapidly registered,
and the resulting estimates of subject motion are used to update imag-
ing parameters “on the fly” during scanning, allowing the scanner to
image in head-relative coordinates despite subject motion. These mo-
tion updates are inherently low-frequency, since they can only occur
once per TR (e.g., every 2.53 s during our MEMPRAGE protocol), and
subject motion between segments is not fully corrected. To address
this, the system can automatically reacquire TRs that it determines to
have been motion degraded based on it's estimate of subject motion.
Combining the prospective updates with retrospective reacquisition
provides a substantial reduction in the impact of head motion on the
output images.

In addition to vNavs, other prospective motion correction systems
have also demonstrated qualitative improvements in image quality
when subjects perform motions that would normally cause substantial
artifacts (van der Kouwe et al., 2006; Zaitsev et al., 2006, 2015; Ooi
et al., 2009; Brown et al., 2010; Kuperman et al., 2011; Hess et al.,
2011; Tisdall et al., 2012; Maclaren et al., 2013). However, given the
new awareness that even small amounts of motion may compromise
morphometric data, we are interested in evaluating whether vNav-
enabled scans can correct the motion-induced bias in morphometry,
even when the motions performed are too small to cause obvious
image artifacts.

We address this question using a superset of the data that was con-
sidered in (Reuter et al., 2015). The previous work considered only
scans without prospective motion correction and derived statistical
tests to evaluate the effects of motion on uncorrected studies. In the
present work we add into our analysis scans where prospective motion
correction with vNavs was used, and evaluate whether the corrected
scans show a significantly smaller error due tomotion than those with-
out correction.

Materials and methods

Scanning

Twelve healthy adult volunteers (5 male and 7 female; ages 21–43,
mean age 26.9 years, standard deviation 7.2 years), having given in-
formed consent, were scanned in a 3 T TIM Trio MRI System (Siemens
Healthcare, Erlangen, Germany) using the 12-channel head matrix coil
supplied by the vendor. For each subject, scans were performed during
one visit and the scanning session was divided into two blocks of equal
length. Between each of the two blocks, the subject was removed from
the scanner and allowed to take as long a break as desired. During each
scan block, subjects' heads rested on a pillow, stabilized by foam blocks
on both sides. Subjectswere located in the bore such that the junction of
the top of the nose and the brow was at isocenter.

Each visit included eight repetitions of a 3D multi-echo MPRAGE
(MEMPRAGE) (Mugler and Brookeman, 1990, 1991; van der Kouwe
et al., 2008): two still scans (both without prospective motion correc-
tion), and then two scans in each of three motion conditions, giving a
total of six motion scans. Scanningwas performed using a research ver-
sion of the vNavs-enabled MEMPRAGE pulse sequence, which is avail-
able as a research sequence for some Siemens scanner platforms.
Subjects were asked to perform three qualitatively different motions:
nodding (rotation around left–right axis), shaking (rotation around
head–foot axis), and moving freely (each subject was directed to
make up a short pattern to repeat, with the suggestion “draw a figure-
8 with your nose.”). These motion types were chosen in order to cover
a variety of motion directions. In studies of disease and aging there
may be stereotyped patterns and frequencies of motion, but to the
best of our knowledge these features of in-scanner behavior have not
yet been documented for any specific populations of interest. Our pres-
ent study was not powered to differentiate effects of different motion
types. Instead, our goal in having subjects perform a variety of motion
typeswas to inducewithin-subject variability in the scans, under the as-
sumption that each motion “type”would also lead to different amounts
of motion.

For each type of motion, one repetition was performed with pro-
spective motion correction disabled (but with vNavs measuring subject
motion) while the other repetition had prospective motion correction
enabled. Each block included scans with one of each motion type (still,
nod, shake, and free), but whether the first or second repetition of
each motion type had prospective correction enabled was randomized
for each subject. Subjects were not informed as to whether or not
motion-correction was being applied. Before each scan, an auto-align
localizer (van der Kouwe et al., 2005; Benner et al., 2006)was run to en-
sure each scan began in approximately equivalent alignment with the
head. The order of the scans was randomized for each subject in order
to reduce potential order-related biases in the results.

Before entering the scanner, subjects rehearsed the motions with
the experimenter and were reminded that the motions should remain
small (our experience from past studies being that MRI-naive subjects
who are asked to move tend to perform very large motions). When in-
side the scanner, subjects were directed as to which motion to perform
and the duration of eachmotion throughwritten instructions projected
on a screen at the head of the scanner bore and visible in a mirror at-
tached to the coil. Subjects were told to begin moving when the screen
switched to a move instruction and continue moving until presented
with instructions to “remain still”. Subjects were instructed to remain
still in whatever position they found themselves in when the screen
switched back to “remain still” (their pre-scan verbal instructions in-
cluded the phrase “freeze when the screen asks you to remain still”).
Each subject was randomized to be either a “long” or “short”movement
subject, with six subjects in each group. “Long” movement subjects
were directed to move for a 15-second block during each minute of
scanning, while “short” movement subjects were directed to move for
a 5-second block during each minute of scanning. Subjects were not in-
formedwhich group theywere in. Similar to our use of multiple motion
types, our goal in having long and short motion groupswas not to study
whether these two amounts of motion produced significantly different
effects, but instead to help ensure larger between-subject variability
than would occur if all subjects were asked to move for the same
duration.

Scans were immediately stopped and repeated if a subject's motion
was estimated to have exceeded 8° rotation or 20mm translation in one
TR. This limit is enforced by Siemens' PACE motion-tracking system
(Thesen et al., 2000), upon which the vNavs system is based.

All 3D MEMPRAGE scans were acquired with the same protocol:
non-selective inversion and excitation, 2530 ms TR, 1220 ms TI,
256 mm × 256 mm × 176 mm FOV with 1 mm isotropic resolution, 4
echoes with a bandwidth of 650 Hz/pixel, and 2× GRAPPA acceleration
in the outer-most phase-encode loop. The voxel-wise root-mean-
squared combination of the four echoes was used for all subsequent
analysis. vNavs (3D-encoded EPI volumes) were acquired once every
MEMPRAGE TR as described in (Tisdall et al., 2012); the vNav protocol
had a 256 mm × 256 mm × 256 mm FOV with 8 mm isotropic resolu-
tion, one excitation per slab and 3/4 partial Fourier in the slice direction,
11 ms TR, 5.3 ms TE, and a bandwidth of 4223 Hz/pixel. Total scan time
for the scans without motion correction was 6:12, while the scans with
motion correction included 18 extra TRs of reacquisition, and thus their
total timewas 7:00 (19 extra TRs need to be played for 18 reacquisitions
to ensure each imaging TR is sandwiched between vNavs; for more de-
tails see (Tisdall et al., 2012)). The choice of 18 extra TRs was made
based on the desire to keep a practical scan duration (in this case
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7min). In our study this numberwas kept constant for all subjects in the
with-motion-correction conditions; in practice some versions of the
vNavs system can automatically stop scans early if continued reacquisi-
tion is unnecessary. k-space was sampled in a linear order, and themo-
tions were not timed with any particular focus to overlap with specific
portions of k-space.

Morphometric analyses

Our goal in this study was to quantify how motion and vNavs pro-
spective motion correction influence widely used morphometric analy-
sis methods, and not focus on any particular analysis procedure. To this
end, multiple morphometric analyses of the MEMPRAGE volumes were
performed using FSL Siena 5.0.7, the voxel based morphometry VBM8
toolbox (Gaser, 2014) of the SPM8 package (Ashburner and Friston,
2005), and both the cross-sectional (Fischl et al., 1999a,b) and longitu-
dinal (Reuter et al., 2010, 2012) analysis streams of FreeSurfer 5.3. The
use of diverse tools, each producing their own metrics using indepen-
dent algorithms, ensures that the observed effects ofmotion andmotion
correction were not an isolated artifact of a particular analysis
procedure.

Percent brain volume change (PBVC) between two scans was esti-
matedwith FSL Siena.We computed seven PBVCmeasures for each sub-
ject by performing independent pairwise comparisons of the first still
scan from the subject's session with the second still scan and each of
their six motion-corrupted scans. In FSL Siena standard-space masking
was used as well as BET (-m option). Furthermore, the lower part of
MNI152/Talairach space (−b −50) was ignored and the approximate
center of the head passed to BET (−B “–c 135 100 90”).

Gray matter (GM) volumes were estimated using SPM/VBM. We
computed eight GM volumes for each subject; one from each scan dur-
ing their visit.

Automated segmentations of the cortical surfaces were generated
from each scan using both the cross-sectional and longitudinal image-
processing stream of FS. In the longitudinal processing stream, each
scan was treated as a separate time point; surfaces were estimated
first on a robust within-subject template generated from all of the
subject's scans, with a subsequentfine-tuning step to adjust the surfaces
for each of the eight individual scans. This approach has been shown to
reduce variability and prevents completely incorrect placement of sur-
faces in cases with severe motion. Thus, for each subject we produced
16 sets of surfaces — 8 scans, evaluated with both the cross-sectional
and longitudinal FS streams. From each surface we computed the GM
volume, producing 16 measures for each subject.

Calculation of subject motion metrics

During each MEMPRAGE TR, the vNavs system logs an estimate of
the subject's displacement relative to the first TR of the scan. While
translationsmove all parts of the head equally, rotations displace differ-
ent regions by different amounts. To summarize subject motion, we
have opted to use the root-mean-square (RMS) of the displacement
over all points inside a sphere with 64 mm radius, initially centered at
isocenter (Jenkinson, 1999). This allows a summary of the displacement
at each TRwith a single number, in units of mm. These per-TR displace-
ments were then averaged over the duration of the scan, and a single
motion score computed for each scan, RMS displacement per minute
(RMSpm), expressed in units of mm/min.

Visual inspection of data quality

All MEMPRAGE images were visually evaluated by an expert for
motion-related artifacts (e.g., blurring and ringing) as well as general
criteria that can affect image quality, including: head coverage, wrap-
ping artifact, radiofrequency noise, signal inhomogeneity, and suscepti-
bility distortions and drop-outs. An ordinal score was given to each
criterion (none, mild, moderate, severe), and an overall qualitative
score was given to each image (pass, warn, fail) using standardized
methodology (Qureshi et al., 2014; Harvard Center for Brain Science,
2015).

Testing the effect of motion on morphometric analyses

We are interested in addressing several related concerns that can
impact the design and analysis of morphometric studies:

• What is the effect size of motion on morphometry with- and without
motion correction? Is there a significant difference between the two
conditions? Is the effect small enough in either condition that we
can just ignore it or does a motion measure need to be included in
models analyzing morphometric measurements?

• How variable is the data with and without motion correction? Will
motion-induced variance reduce studies' ability to detect small ef-
fects, even if a motion measure is included in the model?

In the remainder of this section,we restate these general concerns as
testable questions involving nested linear mixed effects models
(Fitzmaurice et al., 2012; Bates, 2010; Bates et al., 2014).

Noting that our analysis pipeline with FSL Siena generated only rel-
ative change in brain volume (in our case, relative to the first still scan),
we computed similar relative percentage change metrics for the other
morphometry pipelines, giving us relative change in gray matter vol-
ume from SPM/VBM and relative changes in gray matter volume from
the cross-sectional and longitudinal FreeSurfer streams. We call these
our percentage change (PC) measures and address our questions with
respect to the PC measures for all four morphometry pipelines.

Excluding our FSL Siena results, the remaining three data analysis
pipelines (SPM/VBM, and FreeSurfer cross-sectional and longitudinal)
all produced per-scan estimates of absolute gray-matter volume. Thus,
we can also directly fit these measurements using linear mixed-effect
models. We call these our gray matter volume (GMVol) measures, and
address our questions with respect to the GMVol measures for the
three morphometry pipelines where they are available.

In addition to the various measures we consider, we are also inter-
ested in whether the answers to the questions above are impacted by
filtering the data.We consider three possiblefiltering cases: nofilter, fil-
tering based on visual QC (QC-filtered), and filtering based on RMSpm
motion score (motion-filtered). In the QC-filtered case, we discard all
data with a “fail” rating, as the remainder is data that would normally
be included in morphometric studies (with “warn”-rated scans being
evaluated more carefully to ensure automated segmentation appears
correct). For themotion-filtered case, we discard all data with a motion
score greater than 5 mm/min.

In total we therefore have 7 measures (4 PC and 3 GMVol) and 3 fil-
ters, giving a total of 21 conditions. The data and the Mathematica
(Wolfram Research Inc., 2014) script for computing the results below
are available as part of the online supplementary materials for this
manuscript.

Our tests consist of comparing pairs of nestedmodels, askingwheth-
er one model fits the measurements in a given condition significantly
better than a different model. We fit our models' free parameters to
the data via maximum likelihood estimation, and compare them using
likelihood ratio tests. The details of these operations are described in
Appendix A.

Question 1
It has been previously shown that, on average, subject motion nega-

tively biases themorphometry pipelines used in this study (Reuter et al.,
2015). Based on this result, our first question is:

Q1. Does using prospective motion correction reduce the fixed effect
of motion on morphometric measures?



14 M.D. Tisdall et al. / NeuroImage 127 (2016) 11–22
To formulate our first question as a test of two hypotheses we define
a base model, that accounts for motion but not for the use of motion-
correction; all data both with- and without-motion-correction is fit
jointly with one model.

For the PC data, the base model is

PCi; j ¼ βm þ bm;i
� �

Δmi; j þ ϵi; j ð1Þ

where i indexes subjects and j indexes repeated scans of a subject and

• PCi,j is the measured percent change relative to the baseline scan (in
our case, the first still scan),

• Δmi,j is the difference between the measured RMSpm subject motion
for the current scan and the baseline scan (in our case, the first still
scan),

• βm is the fixed effect of motion on PC measures,
• bm,i is the random effect of motion on PC measures for the ith subject,
and

• ϵi, j is a random effect representing residual error.

Here, wemake the assumption that all bm,i are independently drawn
fromNð0;σ2

bm
Þand all of the ϵi, j are independently drawn fromNð0;σ2Þ.

For the GMVol data, the base model is

GMVoli; j ¼ βm þ bm;i
� �

mi; j þ β1 þ b1;i þ ϵi; j ð2Þ

where the parameters are

• βm, the fixed effect describing the effect of motion on gray matter
volume,

• β1, the fixed effect describing gray matter volume when there is no
motion,

• bm,i, the random effect describing the effect of motion on gray matter
volume for the ith subject,

• b1,i, the randomeffect describing graymatter volumewhen there is no
motion for the ith subject,

• mi, j, themeasured RMSpm subject motion for the ith subject's jth scan,
and

• ϵi, j, the random effect representing residual error.

We make the assumption that, for each i,

b1;i; bm;i
� � � N 0;

σ2
b1 0

0 σ2
bm

" # !
ð3Þ

Some key points to note about these two models are:

• the PCmodel uses the relativemotion between each scan and the first
still scan, since the percentage change measurement being fit is also
computed relative to the first still scan;

• the βm and bm,i parameters in both models describe the effect of mo-
tion, but they are not expected to have the same value since they de-
scribe different data sets in different units;

To complete the formal description of our question, wemust also de-
fine an alternativemodel thatwewill test for significantly superiorfit rel-
ative to our basemodel. The alternativemodel for ourfirst question splits
the fixed effect of motion based on whether or not prospective motion-
correction was used. For the PC data the moco fixed effect model is

PCi; j ¼ βnomoco 1−mocoi; j
� �þ βmocomocoi; j þ bm;i

� �
Δmi; j þ ϵi; j ð4Þ

adding the parameters

• βnomoco is thefixed effect ofmotion on PCmeasureswhenmotion cor-
rection is not used,
• βmoco is the fixed effect of motion on PC measures when motion cor-
rection is used, and

• mocoi, j is 1 if motion correction was used and 0 otherwise.

For the GMVol data, the moco fixed effect model is

GMVoli; j ¼ βnomoco 1−mocoi; j
� �þ βmocomocoi; j þ bm;i

� �
mi; j þ β1

þ b1;i þ ϵi; j ð5Þ

where we now have the parameters

• βnomoco, the fixed effect describing the effect of motion on graymatter
volume when motion correction is not used, and

• βmoco, the fixed effect describing the effect of motion on gray matter
volume when motion correction is used.

With these two models, we can now rewrite our first question in a
form that can be answered with a likelihood ratio test:

Q1. Does the moco fixed effect model fit the data significantly better
than the base model?

Question 1 addresses whether using vNavs for prospective motion
correction has reduced the fixed effect of motion on morphometry by
comparing βnomoco to βmoco.

Question 2
Our next question relates to the variability in the data.

Q2 On top of any reduction in the fixed effect of motion on mor-
phometry, does the use of prospective motion correction make
the effect of motion more consistent between subjects?

This question is important in study design because even if the aver-
age effect ofmotion is smallerwith prospective vNavmotion correction,
there might still be significant between-subject variability in the size of
the effect. This between-subject variability might mask smaller sources
of between-subject difference thatwould be of interest in a study (e.g., if
the between-subject variability of the motion-effect is large, we will be
less able to assert a between-subject difference is related to disease in-
stead of motion when disease and motion both vary).

To state this question formally, we must introduce another model,
that we will call the moco random effect model. Our new model splits
the random effect due to motion into one effect for data acquired with
motion correction and a second randomeffect for data acquiredwithout
motion correction. For the PC data, this model is

PCi; j ¼ βnomoco þ bnomoco;i
� �

1−mocoi; j
� �þ βmoco þ bmoco;i

� �
mocoi; j

� �
Δmi; j þ ϵi; j

ð6Þ

where the new parameters are

• bnomoco,i is the random effect of motion on PCmeasures for the ith sub-
ject when motion correction is not used, and

• bmoco,i is the random effect of motion on PC measures for the ith sub-
ject when motion correction is used.

We make the assumption that, for each i,

bnomoco;i; bmoco;i
� � � N 0;

σ2
bnomoco

σbnomoco;bmoco

σbnomoco;bmoco σ2
bmoco

" # !
ð7Þ
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For the GMVol data, the moco random effect model is

GMVoli; j ¼ βnomoco þ bnomoco;i
� �

1−mocoi; j
� �þ βmoco þ bmoco;i

� �
mocoi; j

� �
mi; j

þ β1 þ b1;i þ ϵi; j ð8Þ

where the new parameters have the same definition as in the PC model
above, and the covariance structure for the random effects are similarly

b1; bnomoco;i; bmoco;i
� � � N 0;

σ2
1 0 0
0 σ2

bnomoco
σbnomoco ;bmoco

0 σbnomoco ;bmoco σ2
bmoco

2
64

3
75

0
B@

1
CA ð9Þ

With these two models, we can now specify the formal version of
our second question that we can address via a likelihood ratio test:

Q2. Does themoco random effectmodel fit the data significantly bet-
ter than the moco fixed effect model?

Question 2 allows us to evaluate whether using vNavs for prospec-
tivemotion correction has reduced the randomeffect ofmotion by com-
paring σbnomoco to σbmoco . We note that we are comparing our moco
random effect model to one where we have already split the fixed ef-
fects, instead of comparing against the base model. We do not compare
against the basemodel becausewe could not differentiate the impact of
motion correction on fixed or random effects— if our alternative model
provided a significantly better fit we could be unable to tell why.

Question 3
Our next question addresses residual variability in themeasurements.

Q3. On top of reductions in the per-subject effect of motion on mor-
phometry, does using prospective motion correction reduce the
per-scan variability of morphometry?

This question is related to the ability to resolve any effect in the anal-
ysis of the morphometry measurements. The lower the between-scan
variability, the better able we are to find smaller effects that might oth-
erwise be “below the noise floor”.

To state this question formally, we introduce the full model, splitting
the residual into with- and without-motion-correction residuals. For
the PC data, this model is

PCi; j ¼ βnomoco þ bnomoc;i
� �

1−mocoi; j
� �þ βmoco þ bmoco;i

� �
mocoi; j

� �
Δmi; j

þ ϵnomoco;i; j 1−mocoi; j
� �þ ϵmoco;i; jmocoi; j

ð10Þ

where the new parameters are

• ϵnomoco,i, j is a random effect representing residual error when motion
correction is not used, and

• ϵmoco,i, j is a random effect representing residual error when motion
correction is used.

We make the assumption that, for each i and j, ϵnomoco;i; j � Nð0;
σ2

nomocoÞ and ϵmoco;i; j � Nð0;σ2
mocoÞ are independent.

For the GMVol data, the full model is

GMVoli; j ¼ βnomoco þ bnomoco;i
� �

1−mocoi; j
� �þ βmoco þ bmoco;i

� �
mocoi; j

� �
mi; j

þ β1 þ b1;i þ ϵnomoco;i; j 1−mocoi; j
� �þ ϵmoco;i; jmocoi; j

ð11Þ

This allows us to formally state our question as:
Q3. Does the full model fit the data significantly better than themoco
random effect model?

Question 3 allows us to see whether the residual error not explained
by either thefixedor randomeffect ofmotion is reduced using vNavs for
prospective motion correction by comparing σmoco to σnomoco. As in the
discussion of question 2, we have chosen to compare this order of pa-
rameter splitting in order to ensure thatwe are testing just the addition-
al benefit of splitting the residual parameter, and not confounding it
with the effects of splitting other parameters.

Question 4
Finally, we propose one additional question.

Q4. Are the fixed effects of motion on the morphometry measure-
ments significantly different from zero?

In all of our conditionswe find some non-zero fixed effect ofmotion on
morphometrymeasurements. However, given the small sample size of our
study, it is important to determine whether the fixed effects we observe are
significant, or could just be due to fitting measurement noise. If the effects
are significant in our small study, thenwe can expect that theywould be sig-
nificant ina larger studyacquiringdata similarly (i.e., samesequenceandpro-
tocol, same coil, sameanalysis software). If the effects are not significant, then
we cannot conclude whether there is no fixed effect of motion, or whether
the effect is small and a larger study is needed to measure it.

We can formalize this question by comparing our fit full model
against full models with the sameparameter values exceptwithβnomoco

or βmoco set to 0. The formal version of our question is then:

Q4. Does the full model fit the data significantly better than the full
model with one fixed effect parameter forced to 0?

Results and discussion

Fig. 1 shows a representative slice from one subject's volumes in
all conditions. It also shows the motion and visual QC scores assigned to
each image. This subject was chosen because the subject's QC
scores spanned all three levels (pass, warn, and fail), but the amount of
motion is moderate, demonstrating a representative variation in
the artifacts being discussed. In particular we note that none of these im-
ages show particularly “extreme” levels of motion artifact, indicating that
the levels ofmotionwehave explored in thiswork exemplify the scope of
motion artifact that is likely to occur in many neuroimaging studies.

Fig. 2 shows the distribution of percentage change in morphometric
measures between still scans.We note that thismeasure of repeatability
captures many possible sources of variation: inherent variability in the
output of the software packages, variability in image inputs due to repo-
sitioning the subject in the scanner, and variability in subjectmotion be-
tween scans where they were asked to be still. More analyses of the
impacts of these effects and others, can be found in (Han et al., 2006;
Reuter et al., 2012; Maclaren et al., 2014).

For each of the datasets (PC or GMVol), the results directly related to
our four questions are summarized in two tables and one figure. Table 1
shows the p-values associated with the likelihood ratio test for each
question, applied to the percentage change data in all 12 combinations
of analysis package and measurement filtering. Fig. 3 plots the RMSpm
and percentage change of each scan relative to each subject's first still
scan. Overlaid on these plots are the maximum likelihood estimates of
the fixed effect slopes from the full model (βnomoco and βmoco in
Eq. (10)) applied to the PC data. Note that in some conditions, the slopes
are not significantly different from zero (e.g., Table 1 Question 4), and so
are not plotted. Table 2 lists the maximum likelihood estimates of the
parameters for the full model of the PC data in Eq. (10).

Paralleling the results for the PC data, Table 3 shows the p-values
associated with the likelihood ratio test for each question, applied



Fig. 1. Representative slice from one subject in all conditions. Each column represents whether motion correction was on or off; each row represents the type of motion the subject was
asked to perform. Note that in both scans where the subjects was still (i.e., both the top-left and top-right images) there is no motion correction. Each image also displays the estimated
RMSpmmotion and the quality score assigned to the data by visual inspection.
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to the GMVol data in all 12 combinations of analysis package and mea-
surement filtering. Fig. 4 plots the RMSpm and estimated gray matter
volume of each scan. Overlaid on these plots are the maximum likeli-
hood estimates of the fixed effect slopes from the full model (βnomoco

and βmoco in Eq. (11)) applied to the GMVol data. As before, in condi-
tions where the slopes are not significantly different from zero are not
plotted (e.g., Table 3 Question 4). Table 4 lists the maximum likelihood
estimates of the parameters for the full model of the GMVol data in
Eq. (11).
Overall, considering the results to all four of our questions in all of
the conditions, we find that the use of vNavs for prospectivemotion cor-
rection significantly reduces the effects of motion on morphometry
analyses. Critically, this reduction in motion-effects persists when data
is aggressively filtered based on either visual inspection or a motion
threshold taken directly from motion tracking during the scan. This
means that prospective motion correction using vNavs provides a sig-
nificant benefit to morphometry studies beyond the improvements
that are made with traditional QC procedures.



Fig. 2. Distribution of percentage differences in relevant metric between the first and the
second still scan, analyzed using each of the four pipelines. For FreeSurfer and SPM/VBM
this is percentage change in graymatter volume, for SIENA this is brain volume. Thewhis-
kers in this plot represent the 3/2 inter-quartile range, and outliers beyond this are drawn
as individual points.
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Question 1 addresses the question of whether the motion-related
bias previously noted in (Reuter et al., 2015) is reduced by using
vNavs prospectivemotion correction. In every conditionwe considered,
therewas a highly significant reduction inmotion-induced bias. This re-
duction is critical for studies where the factor of interest (e.g., age, dis-
ease) covaries highly with subject motion. In these cases, reducing the
scale of themotion effect increases the ability to detect the effects of in-
terest. This difference in slope is apparent in Figs. 4 and 5, where the
motion-corrected (red) points clearly fall along a different line than
the without-motion-correction (blue) points.

Question 2 addresseswhether themotion-related bias ismademore
consistent between subjects with prospective motion correction, while
Question 3 addresses whether between-scan variability not explained
as a linear effect of motion is also reduced by using prospective motion
correction. Both of these questions relate to the variability in the data,
so we will consider them together. Additionally, the results of these
questions differed between the percentage change (PC) and graymatter
volume (GMVol) data, so we will address each measurement type in
turn.

In the PC data results for Question 2,we found (with the exception of
one condition) a significant reduction in between-subject variability in
Table 1
p-values of the likelihood ratio tests for each question, applied to the percentage change data. I
motion-filtered data. Question 4 is split into two rows, one for each of the two fixed effects be

SIENA SPM/VBM

full QC motion full QC m

Q1 b0.01 b0.01 b0.01 b0.01 b0.01 b

Q2 b0.01 b0.01 0.029 b0.01 b0.01 b

Q3 0.426 0.446 0.379 b0.01 b0.01
Q4 (βnomoco = 0) b0.01 b0.01 b0.01 b0.01 b0.01
Q4 (βmoco = 0) 0.214 0.140 0.325 b0.01 b0.01
the effect of motion on morphometry. However, in Question 3 we
found mixed results, with less than half of the conditions showing a re-
duction in between-scan variability. Considering these two results to-
gether, we note that there is a reduction in variability with the use of
prospective motion correction, although it is more often attributed to
between-subject variability than between-scan variability.

In the GMVol data we find similar results, but with reversed pattern
of significance, for Questions 2 and 3: Question 2 showedmixed results
while Question 3 demonstrated a consistent significant reduction in
between-scan variability. As with the PC data, we can combine these re-
sults to conclude that there is a general reduction in variability of GMVol
measurements when prospective motion correction is used, although it
ismore attributed to a reduction in between-scan than between-subject
variability.

Question 4 tests whether the fixed effects we've found in the full
models are significant. We find that, in the without-motion-correction
case, fixed effect ofmotion on themorphometry (βnomoco) is significant-
ly different from zero in all conditions. This result is consistent with the
result of (Reuter et al., 2015), indicating that without prospective mo-
tion correction there is a significant bias regardless of what quality fil-
tering is performed.

In contrast, the with-motion-correction fixed effect (βmoco) is only
significantly different from zero in some conditions (more frequently
in the GMVol data than in the PC data).We have illustrated this by plot-
ting only the significant fixed effects in Figs. 4 and 5. It is important to
note that our failure to find a significant slope in some conditions does
not imply that the fixed effect can be ignored if data from subsequent
experiments is analyzed using a specific combination of pipeline and fil-
ter. It may be that the fixed effect is smaller in some conditions, but it
may also be that the variability of the data is large enough to obscure
small fixed effects. We can, however, conclude that, while prospective
motion correction has significantly reduced the fixed effect of motion,
it has not completely removed it, since some conditions still show a sig-
nificant fixed effect.

Taken together, our results show that using vNavs for prospective
motion correction reduces both the fixed effect ofmotion onmorphom-
etry, and also the variability of the measurements, making data more
consistent across motion-levels and across repeated measurements of
the same subject. Both of these effects are important, as they diminish
the impact of motion as a confounder in studies where motion may be
correlated with the variable of interest.

Considering Figs. 3 and 4, we note that the use of a single linear
component to model the effect of motion on the morphometric mea-
sures may not fully capture the shape of the relationship in all cases.
This is also reflected in Table 4, where we note that the estimated
fixed effect of motion in all three pipelines increases as we filter the
data. This implies that the effect of motion likely has higher-order com-
ponents. It may also be the case that, since the vNavs system does not
provide a perfect measure of subject motion, the RMSpm metric we
used has a small upwards bias when the subject is still. This would
tend to compress the lowest-motion scans in Fig. 4 slightly right-
ward, and in turn over-estimate the fixed effect of motion in low-
motion scans while correctly estimating it in higher-motion scans.
n each cell, the three p-values are given for the (left) full, (center) QC-filtered, and (right)
ing tested against 0. Values greater than the p b 0.05 threshold are shown in bold.

FS cross-sectional FS longitudinal

otion full QC motion full QC motion

0.01 b0.01 b0.01 b0.01 b0.01 b0.01 b0.01
0.01 b0.01 b0.01 0.056 b0.01 b0.01 0.030
0.088 b0.01 0.081 0.077 b0.01 b0.01 0.208
0.018 b0.01 b0.01 b0.01 b0.01 b0.01 b0.01
0.163 0.020 0.062 0.269 b0.01 0.072 0.459



Fig. 3. Scatter plots of percentage change in relevantmetric against measured subjectmotion relative to the first still scan for each subject. Each quadrant displays results from a different
analysis pipeline. Each point represents one scan. For SIENA, the relevant metric is percentage change in brain volume. For SPM/VBM, cross-sectional FreeSurfer, and longitudinal
FreeSurfer, the metric is percentage change in gray matter volume. Scans acquired without motion correction are represented in blue (“x” for scans that passed visual QC, diamonds
for scans that failed),while scans acquiredwithmotion correction are represented in red (circles for scans that passed visual QC, squares for scans that failed). For each of the threefiltering
conditions, the slope of the fixed effects ofmotion asfit with the fullmodel (βnomoco andβmoco in Eq. (10)) are plotted if they are significantly different from0 (see Table 1 Question 4 for p-
values). Aswith the scan points, with- andwithout-motion-correction slopes are plotted in red, and blue lines, respectively, with solid lines for the estimates from all data, dashed lines for
the estimates from QC-filtered data, and dotted lines for the estimates using motion-filtered data.
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While a more complicated model could be created to describe all of
these features of the data, and might provide benefit for the purposes
of fully separating the effect of motion in a study where other effects
were also present in themodel, our results here make clear that our lin-
ear model provides an adequate approximation for the purposes of ad-
dressing our four questions.
Table 2
Maximum likelihood estimates of the parameters for the full model for the PC data (Eq. (10)). I
motion-filtered data.

SIENA SPM/VBM

full QC motion full QC m

βnomoco × 10 −3.71 −2.55 −2.32 −10.73 −8.78 −
βmoco × 10 −0.13 −0.36 0.42 −2.39 −1.94 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiσbnomoco ;bmoco

p � 10 0.47 0.72 1.44 2.28 2.18
σnomoco × 10 5.23 2.75 2.39 13.22 9.89
σmoco × 10 5.13 2.71 2.25 10.15 7.59

Table 3
p-Values of the likelihood ratio tests for each question applied to the graymatter volume data.
motion-filtered data. Question 4 is split into two rows, one for each of the two fixed effects be

SPM/VBM FS cross-se

full QC motion full

Q1 b0.01 b0.01 b0.01 b0.01
Q2 b0.01 0.453 0.017 0.011
Q3 b0.01 b0.01 b0.01 b0.01
Q4 (βnomoco = 0) b0.01 b0.01 b0.01 b0.01
Q4 (βmoco = 0) b0.01 b0.01 0.107 b0.01
Finally, Fig. 5 shows the distribution of RMSpm subject motion in
each of the experimental conditions. The motion distributions are simi-
lar in the with- and without-motion-correction conditions where sub-
jects performed directed motions (second and third column of Fig. 5),
indicating that the amount of subject motion was consistent between
the two conditions. However, after visual QC the distributions look
n each cell, the three estimates are given for the (left) full, (center) QC-filtered, and (right)

FS cross-sectional FS longitudinal

otion full QC motion full QC motion

7.92 −14.37 −9.82 −10.4 −11.25 −8.64 −10.66
1.51 −1.78 −1.5 1.87 −0.83 −0.85 −0.61
0.53 1.83 3.29 5.77 2.04 2.19 2.05
8.15 17.88 13.49 9.25 13.59 11.77 10.12
6.85 14.13 11.87 7.28 9.53 8.91 9.14

In each cell, the three p-values are given for the (left) full, (center) QC-filtered, and (right)
ing tested against 0. Values greater than the p b 0.05 threshold are shown in bold.

ctional FS longitudinal

QC motion full QC motion

b0.01 b0.01 b0.01 b0.01 b0.01
0.456 0.179 0.183 0.012 b0.01
0.047 b0.01 b0.01 b0.01 0.022

b0.01 b0.01 b0.01 b0.01 b0.01
b0.01 0.096 b0.01 b0.01 b0.01



Fig. 4. Scatter plots of graymatter volume againstmeasured subjectmotion. Each quadrant displays results from a different analysis pipeline. Each point represents one scan. For clarity of
visualization, each scan's position on the y-axis has been shifted to remove the effect of the estimated β1 and b1,i using the model in Eq. (11). This removes scaling differences between
subjects and shifts the y-axis so that the extrapolated mean “zero-motion” gray matter volume for the full data is 0 mm3. Scans acquired without motion correction are represented in
blue (“x” for scans that passed visual QC, diamonds for scans that failed),while scans acquiredwithmotion correction are represented in red (circles for scans that passed visual QC, squares
for scans that failed). For each of the three filtering conditions, the slope of the fixed effects of motion as fit with the full model (βnomoco and βmoco in Eq. (11)) are plotted if they are sig-
nificantly different from 0 (see Table 3 Question 4 for p-values). As with the scan points, with- and without-motion-correction slopes are plotted in red, and blue lines, respectively, with
solid lines for the estimates from all data, dashed lines for the estimates from QC-filtered data, and dotted lines for the estimates using motion-filtered data.
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quite different (fourth and fifth columns); the with-motion-correction
data now includes scans with more motion than the without-motion-
correction data. This shows that with vNavs prospective motion correc-
tion, the effective threshold for subject motion rendering a scan unus-
able according to visual inspection is higher. We would therefore
expect that studies that suffer from motion may be able to retain more
scans and thus have higher power to detect effects in conditions
where subjects move. This increase in power from retaining more
scanswould be an additional increase, on top of that gained by reducing
between-scan and between-subject variability through the use of pro-
spective motion correction.

We have not addressed what features of the images are affected by
subject motion and in turn cause our morphometry results to change.
With the our current results, we cannot determine whether the images
exhibit less apparent gray matter when subjects move, or if there are
Table 4
Maximum likelihood estimates of the parameters for the full model for the GMVol data (Eq. (1
(right) motion-filtered data.

SPM/VBM FS cross

full QC motion full

β1 × 10−5 6.82 6.82 6.9 4.92
βnomoco × 10−3 −5.21 −4.24 −6.72 −4.83
βmoco × 10−3 −1.95 −1.93 −3.75 −1.44

σb1 � 10−3 19.73 17.45 14.24 17.92

σbnomoco � 10−3 1.95 1.52 0.3 0

σbmoco � 10−3 0.84 0.77 0.07 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiσbnomoco ;bmoco

p � 10−3 1.28 1.08 0.15 0

σnomoco × 10−3 7.94 6.21 4.82 7.87
σmoco × 10−3 6.16 4.85 3.15 6.22
motion-related artifacts that violate assumptions of the morphometry
algorithms we have considered. Further analysis of the segmentations
and surfaces generated by the various pipelines, and potentially com-
parison with manually labeled data, is required to more thoroughly ad-
dress this question.

Conclusion

Using repeated measurements of healthy subjects performing
voluntary motion, we have shown that vNavs both reduce the effects
of motion in morphometry analyses, and increase the number of
scans that are available for analysis. In studies where motion leads to
loss of scans and may potentially obscure the effects of variables of
interest, our results indicate the use of prospective motion correction
systems, such as vNavs, will reduce errors in inferences drawn from
1)). In each cell, the three estimates are given for the (left) full, (center) QC-filtered, and

-sectional FS longitudinal

QC motion full QC motion

4.9 4.97 4.96 4.96 5.08
−3.7 −5.8 −2.64 −2.11 −5.35
−1.33 −3.51 −0.29 −0.41 −3.4
16.51 10.62 13.23 13.08 11.57

0 2.86 0 0 3.73

0 1.04 0 0 1.37

0 1.73 0 0 2.26

6.32 3.51 6.1 5.36 3.72
5.32 2.3 3.43 3.34 2.64



Fig. 5. Distributions of subject motion in five categories: (from left to right) scans where
the subject was asked to stay still and prospective motion correction was off; scans
where the subject was asked to move and the prospective motion correction was off;
scans where the subject was asked to move and the prospective motion correction was
on; scans where the subject was asked to move, the prospective motion correction was
off, and that passed visual QC; and scans where the subject was asked to move, the pro-
spective motion correction was on, and that passed visual QC. For additional clarity, the
plots are color-coded with blue for non-motion-corrected and red for motion-corrected.
The whiskers in this plot represent the 3/2 inter-quartile range, and outliers beyond this
are drawn as individual points.
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morphometry data. Expanding on the results of (Reuter et al., 2015), our
results show that the improvements in data quality with vNavs pro-
spective motion correction remain even after aggressive removal of
motion-degraded data, either via visual inspection or filtering based
on actual headmotionmeasurements. Thus, prospectivemotion correc-
tion with vNavs can improve the accuracy of morphometric analyses
beyond the improvement provided by QC methods.

While the results shown here are only representative of our specific
protocol and acquisition hardware, significant improvements in image
quality from the use of prospective motion correction systems has
been documented repeatedly for many different systems and protocols
(van der Kouwe et al., 2006; Zaitsev et al., 2006; Ooi et al., 2009; White
et al., 2010; Brown et al., 2010; Hess et al., 2011; Tisdall et al., 2012).We
therefore expect that any of these similar systems might also offer an
improvement in morphometric analyses. In practice, there are trade-
offs between these different systems, with optical systems generally
having greater applicability across a range of sequences but requiring
more setup, and navigator-based methods being available for fewer se-
quences but requiring little extra effort for the user (surveys of the cur-
rent state of motion correction methods for MRI can be found in
(Maclaren et al., 2013; Zaitsev et al., 2015)). Thus, while the vNavs re-
search sequences only operate on specific Siemens scanner platforms,
due to the large amount of active research in motion measurement
and correction, there is now likely to be some method of at least mea-
suring, and likely also prospectively correcting, subject head motion
on most scanner platforms.

Despite the availability of motion tracking and correction systems
for a variety of platforms, it is important to note that we do not yet
fully understand the mechanisms through which protocol, scanner
hardware, and motion tracking system contribute to the scale and im-
pact of motion on morphometry analyses. Therefore, it seems prudent
for those performing studies on populations where motion correlates
with parameters of interest to establish the sensitivity of their measure-
ment and analysis pipeline to motion. It may be the case that certain
combinations of protocols, scanners, or analysis pipelines are more or
less sensitive to the effects of motion. In particular, high-channel
count coils and accelerated parallel imaging methods are potential cul-
prits for increased motion sensitivity, as are spectrally selective excita-
tions such as water-selective and fat-saturation pulses that may be
degraded due to subject motion in the static shim field. However, until
more results are available from a greater variety of studies with differ-
ent hardware and protocols, it is not possible to completely predict
what components make a study more or less sensitive to motion. Fol-
lowing the experiment design we have presented here, other groups
can evaluate the effect of motion on their specific study designs. Recog-
nizing that large,multi-center studies often combine data from a variety
of hardware and protocols, we have demonstrated that very small stud-
ies, using just a few volunteers, suffice to measure the effect of motion
for each scanner configuration included in the study. This data may
then be useful in distinguishing site-specific differences in motion sen-
sitivity from actual differences in disease and treatment effect.
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Appendix A. Fitting mixed effect models and evaluating likelihood
ratio tests

In the conventional notation for linear mixed-effects model, we
write

y ¼ Xβþ Zbþ ϵ ð12Þ

where ϵ is assumed to be drawn from the distribution Nð0; IÞ.
For fixed parameters θ, we have that y conditional on b, and b itself,

are distributed

y;bð Þ � N Xβþ Zb;σ2I
� �

b � N 0;Σθð Þ ð13Þ

where n is the number of measurements. The notation Σθ is used to re-
enforce that Σ depends on the parameters θ that we are estimating. In
our model we want to allow that the residuals ϵ, might have different
variances for different measurements. We can represent this by adding
weights to our model; in our case the residuals in the with-motion-
correction case are assumed to have variance σ2, while the variances
without-motion-correction case are assumed to be ασ2, where we
need to estimateα as a parameter in ourmodel. Thus, ourweightmatrix
Wθ is a diagonal matrix that depends on the parameter set θ, having 1
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along the diagonal where the measurements had motion correction,
and α along the digonal where they do not have motion correction.

Finding the maximum likelihood estimate of θ for models with this
structure is detailed in section 4.4.3 of (Bates, 2010), which gives the al-
gorithm we have implemented in Mathematica.

Given an estimated parameter set θ̂ , our measurements are
multinormal distributed

y � N Xβ;σ2Iþ Σθ̂� � ð14Þ

Using this distribution, we can compute the likelihood of θ̂ given our
data using the likelihood function for this distribution. If we have two
estimated parameter sets, the null hypothesis θ̂0 and the alternative hy-

pothesis θ̂1, the log-likelihood ratio test statistic can be written as

LLR yð Þ ¼ 2 ‘θ̂1 yð Þ−‘θ̂0 yð Þ
h i

ð15Þ

where ‘θ is the log-likelihood function associated with the multinormal
distribution specified by parameter θ.We can produce aMonte Carlo es-
timate for the distribution of their likelihood ratio under the null hy-

pothesis by drawing samples from the distribution associated with θ̂0,
and computing the likelihood ratio, treating the random sample as the
“measurement”. We can then compute the p-value for the likelihood
ratio test, given our actualmeasurement, by comparing howmany sam-
ples from the estimated distribution are more extreme than the likeli-
hood ratio statistic evaluated at the actual measurement (North et al.,
2002).

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.11.054.
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